
A dynamic-link library (DLL) is an executable module containing 
functions that Windows-based applications (like Windows Help) can 
call to perform useful tasks. Windows Help accesses DLLs in two 
ways:xe "DLLs:Help"§

n Through DLL functions registered as Help macros in a Help Project 
file. These functions can then be used in hot spots and macro 
footnotes in topic files. 

n Through embedded window (ew) references in topic files.

If Windows Help’s internal macro set (described in Chapter 15, “Help Macro 
Reference”) doesn’t provide all the functionality you need for a Help file, you 
can write your own DLLs to add extensions to Windows Help. In this chapter, 
you’ll learn two ways to extend Windows Help: by providing custom DLLs 
containing author-defined Windows Help macros and by providing DLL access 
through embedded-window references.xe "DLLs:creating custom"§

When creating DLLs for embedded windows, you must follow all the standard 
design requirements for Windows DLLs. This section assumes that you’re 
familiar with these requirements, which are described in Chapter 20, “Dynamic-
Link Libraries,” of the Microsoft Windows version 3.1 Software Development 
Kit (SDK), Guide to Programming manual..

To create DLLs for Windows Help, you need the Microsoft Windows Version 
3.1 SDK and the Microsoft C Optimizing Compiler, version 6.0 or greater, or 
Microsoft Quick C for Windows version 1.0.xe "Software:to create DLLs"§

Included with this Authoring Guide is the source code for a sample DLL and a 
MAKEFILE for building the sample DLL. The source code is contained in the 
files DLLDEMO.C (for the Help macro DLL) and EWDEMO.C (for the 
embedded window DLL). You can use this sample code as a template for 
creating your own DLL. Be sure you study these source files and understand how
they work before you continue in this chapter, since the sample DLL illustrates 
the concepts presented in this chapter and the remainder of this chapter assumes 
you are familiar with these files.

Writing DLLs for 
Windows Help

_____________________________________________________ Chapter 20



   Microsoft Windows Help Authoring Guide

As explained in Chapter 14, “Help 
Macros,” you can use the 
RegisterRoutine macro to register any 
DLL function as a Windows Help 
macro. You might want to create a DLL

whose sole purpose is to provide new Windows Help macros for your Help 
authors. This section will show you how to do that.xe "RegisterRoutine 
Windows Help macro:DLL functions"§xe "DLLs:registering as Windows Help 
macro"§

Examples in this section use the sample source code in the DLLDEMO.C file. 
DLLDEMO.C contains a HelloWorld function, which plays a beep on the 
speaker.xe "DLLs:Windows Help-command sample source code"§xe "Sample 
application:DLLDEMO sample DLL"§xe "DLLs:embedded-window sample 
source code"§

The examples also refer to a small Windows Help file called DLLDEMO.HLP, 
along with the DLLDEMO.RTF source file and DLLDEMO.HPJ Help project 
File used to build it. HelloWorld is registered as a Help macro in 
DLLDEMO.HPJ, and the following hot spot in the DLLDEMO.HLP Help file 
executes HelloWorld to play a beep.
Call HelloWorld.!HelloWorld(hwndapp,qchPath)

Note

To debug your DLL or observe any of the operations described 
in this section, you can compile DLLDEMO for the CodeView for 
Windows symbolic debugger and load the DLL into CodeView while 
you view the sample title. See the DLLDEMO.C file for specific 
instructions.xe "DLLs:creating custom"§

Registering DLL Functions as Help Macros

When registering a DLL function, you provide Help the following information:

n DLL filename
n Function name
n Data type returned by the function
n Number and type of function parameters

Creating Custom Help Macros



Writing DLLs for Windows Help§   20-3

To register the DLL function, you enter a RegisterRoutine macro in the 
[CONFIG] section of the Help project file. (If you don’t register the DLL 
function in the [CONFIG] section, you must register it another way before using 
the function.) The RegisterRoutine macros are executed when the Help file is 
opened, so the registered functions are available during the entire Help session. 
You must register a DLL routine before using it, or the Help compiler will report 
an error when it encounters the unregistered macro in the RTF source files, and 
the macro will not work when executed in the built Help file.

The RegisterRoutine macro has the following syntax:

RegisterRoutine("DLL-name", "function-name", "parameter-spec")

Parameter Description

DLL-name String specifying the name of the DLL in which the function 
resides. The filename must be enclosed in quotation marks. You 
can omit the .DLL filename extension.

Specify the directory only if necessary. Generally, DLLs are 
installed in the directory where Windows Help resides. See the 
next section, “How Help Locates .DLLs,” for more information.

function-name String specifying the name of the function to use as a Help macro. 
The function name must be enclosed in quotation marks.

parameter-spec String specifying the formats of parameters passed to the function.
Characters in the string represent C parameter types. Valid 
parameter types include the following:



   Microsoft Windows Help Authoring Guide

Character Data Type Equivalent Windows Data Type

u Unsigned short integer UINT, WORD, WPARAM

U Unsigned long integer DWORD, RGBQUAD 

i Signed short integer BOOL (also C int or short)

I Signed long integer LONG, LPARAM, LRESULT

S Far pointer to a null-
terminated text string

LPSTR, LPCSTR

v Void (means no type; 
used only with return 
values)

None. Equivalent to C void data 
type.

The parameter-spec must be enclosed in quotation marks. 
Windows Help checks the format string to ensure that it matches 
the function prototype defined in the DLL. (For more information 
about the RegisterRoutine macro, see Chapter 15, “Help Macro 
Reference.”)

To determine the data type of the function’s parameters, consult the application 
programming interface (API) documenation for the DLL, or ask the person who 
developed the DLL. For information on parameter types of Windows functions, 
see the Windows version 3.1 SDK.

The HelloWorld function is defined as follows in the DLLDEMO.C file:



Writing DLLs for Windows Help§   20-5

PUBLIC BOOL PASCAL EXPORT HelloWorld( LONG hwndContext, LPSTR lszHlpFile) 
{ 
     MessageBeep(0);
}

HelloWorld takes, as parameters, two internal Windows Help variables: a handle
to the Windows Help context window and a pointer to the name of the .HLP file 
that Windows Help has opened. Although HelloWorld doesn’t do anything with 
these parameters, they illustrate the types of internal Windows Help variables you
might pass to a DLL. For a complete list of these variables, see the “Windows 
Help Internal Variables section,” later in this chapter.xe "Internal Windows Help 
variables"§

HelloWorld is registered in the DLLDEMO.HPJ Help project file as follows:
[CONFIG]
RegisterRoutine("dlldemo", "HelloWorld", "US")

As described above, the first parameter to RegisterRoutine is the DLL name 
(DLLDEMO); the second is the name of the function being registered; and the 
third is a format string representing the types of parameters in the function. 
Windows Help compares the parameter-spec with the function’s parameter types 
and issues an error if they don’t match.

The format string for the parameters to HelloWorld are U (unsigned long) for the
LONG parameter and S for the LPSTR parameter. All internal variables that are 
handles should be declared in RegisterRoutine with a U specifier, even though 
they are normally WORDs, for upward compatibility with future versions of the 
Windows graphical environment. All internal string variables should be declared 
with an S specifier.xe "RegisterRoutine Windows Help macro:DLL 
functions"§xe "DLLs:registering as Windows Help macro"§

How Help Locates DLLs

When executing custom DLLs using the RegisterRoutine macro, Windows Help
loads the DLL only when it is needed by the Help file. To load a DLL , Help 
must be able to find it on the user’s system. When preparing to use a .DLL, Help 
looks in the following locations, in the following order:

n Help’s current directory
n The MS-DOS current directory
n The user’s Windows directory
n The Windows SYSTEM directory
n The directory containing WINHELP.EXE



   Microsoft Windows Help Authoring Guide

n The directories listed in the user’s PATH environment variable
n The directories specified in WINHELP.INI
If Help cannot find the DLL after searching in all these locations, it displays an 
error message.

To increase the likelihood that Help will locate the DLL quickly, you should also 
observe the following guidelines:

n Use unique names for all DLLs accessed by the Help file.
n When installing your application on a user’s hard disk drive, your 

setup program should copy all custom DLLs to the directory where 
Help is located. 

n If your product is distributed on CD-ROM, copy WINHELP.EXE 
and any custom DLLs to the user’s hard disk drive.

n Define a WINHELP.INI entry for each custom DLL that your Help 
file is using so that Help knows where to locate them.

For an explanation of the WINHELP.INI file, see the “Creating Links Between 
Help Files” section in Chapter 8, “Creating Links and Hot Spots.”

Windows Help Internal Variables

In the hot-spot example earlier in this section, the HelloWorld function used the 
internal Windows Help variables hwndContext (a handle to the Windows Help 
context window) and qchPath (a pointer to the Help filename). In general, after 
you register a DLL function as a Help macro, you can specify Windows Help 
internal variables as parameters to that function when the function appears in hot 
spots or macro footnotes.xe "DLLs:internal Windows Help variables"§

In this section, you’ll learn about other Windows Help internal variables that you 
can pass to DLL functions registered as Windows Help macros. This section also 
examines in detail one variable that controls how the DLL handles Windows 
Help errors.

List of Variables
You can use any of the following Windows Help internal variables in DLL 
functions.



Writing DLLs for Windows Help§   20-7

Variable Format Spec Description

hwndApp U 32-bit handle to the main Help 
window. This variable is guaranteed 
to be valid only while the function is
executing.

hwndContext U Handle to the current active window 
(either the main Help window or a 
secondary window).

qchPath S Fully qualified path of the currently 
open Help (.HLP) file.

qError S Long pointer to a structure 
containing information about the 
most recent Windows Help error 
(described later in this section).

lTopicNo U Topic number. This number is 
relative to the order of topics in the 
RTF files used to build the Help file.

hfs U Handle to the file system for the 
currently open Help (.HLP) file.

coForeground U Current foreground color.

coBackground U Current background color.xe 
"Internal Windows Help variables"§



   Microsoft Windows Help Authoring Guide

Error Handling
The qError internal variable points to a structure containing information about 
the most recent Windows Help error. The error structure is defined as follows:xe 
"Error handling:DLL errors"§xe "DLLs:error handling"§
struct
 {    WORD  fwFlags;
      WORD  wError; 
      char  rgchError[wMACRO_ERROR]; 
 } QME;

fwFlags

The fwFlags field contains flags indicating how Windows Help responds to 
errors. The following are possible error flags and their values.

Flag Value Description

fwMERR_ABORT 0x0001 Allows the Abort option. This flag is
set by default.

fwMERR_CONTINUE 0x0002 Allows the Continue option.

fwMERR_RETRY 0x0004 Allows the Retry option.

wError

The wError field is a number indicating the type of error that occurred. The 
following are possible error numbers and their values.

Error Number Description

wMERR_NONE 0 No error (initial value)



Writing DLLs for Windows Help§   20-9
wMERR_MEMORY 1 Out of memory (local)

wMERR_PARAM 2 Invalid parameter passed

wMERR_FILE 3 Invalid file parameter

wMERR_ERROR 4 General Help macro error

wMERR_MESSAGE 5 Help macro error with message

rgchError

If the wError field is wMERR_MESSAGE, the rgchError field contains the 
error message that Windows Help displays.xe "DLLs:internal Windows Help 

variables"§xe "DLLs:error handling"§xe "Error handling:DLL errors"§

You might want your DLL to receive notification of Windows Help events (for 
example, when the user selects a jump or changes input focus to an application 
other than Windows Help). To do this, you add a LDLLHandler function to the 
DLL. The LDLLHandler function has the job of processing messages sent from 

Notifying DLLs of Windows Help Events



   Microsoft Windows Help Authoring Guide

Windows Help to the DLL.xe "DLLs:Windows Help event notification"§xe 
"LDLLHandler function:Windows Help event notification"§

When the user clicks the Call HelloWorld hot spot in DLLDEMO.HLP, Windows
Help loads DLLDEMO.DLL and looks for a function named LDLLHandler. If 
Windows Help finds LDLLHandler, it calls LDLLHandler. A sample 
LDLLHandler function is defined in the DLLDEMO.C file.

Note

To debug your DLL or observe any of the operations described 
in this section, you can compile DLLDEMO for the CodeView for 
Windows symbolic debugger and open the DLL in CodeView while 
you view the sample title. See the DLLDEMO.C file for specific 
instructions.

The LDLLHandler function is defined in DLLDEMO.C as illustrated in the 
following example:
PUBLIC     LONG PASCAL EXPORT LDLLHandler(
     WORD     wMsg,
     LONG     lParam1,
     LONG     lParam2)
     {
          switch(wMsg) {
               case DW_WHATMSG:
                    return DC_INITTERM | DC_JUMP;
               case DW_INIT:
                    return TRUE;
               case DW_TERM:
                    return TRUE;
               case DW_ACTIVATE:
                    return TRUE;
               case DW_CHGFILE:
                    return TRUE;
     }
     return FALSE;
}

In this definition, wMsg identifies the message Windows Help has sent to the 
DLL. The two LONG parameters are passed with the message and depend on the 
message type.

When the user first clicks the Call HelloWorld hot spot, Windows Help calls 
LDLLHandler with the wMsg parameter set to DW_WHATMSG. This 
message asks the DLL what types of Windows Help messages it wants to receive.
LDLLHandler should return one or more of the flags in the following table with 
this information. Windows Help uses the flags returned by LDLLHandler to 
determine which messages the DLL wants to receive in the LDLLHandler 



Writing DLLs for Windows Help§   20-11

function.

LDLLHandler 
returns Windows Help sends Description

DC_MINMAX DW_MINMAX, DW_SIZE Minimize, maximize, or 
resize Windows Help

DC_INITTERM DW_INIT, DW_TERM Initialize or terminate DLL

DC_JUMP DW_STARTJUMP, 
DW_ENDJUMP, 
DW_CHGFILE

Jump or change .HLP file

DC_ACTIVATE DW_ACTIVATE Give Windows Help or 
another application input 
focus

DC_CALLBACKS DW_CALLBACKS Give DLL access to 
Windows Help entry points 
(see Calling Windows Help 
Internal Functions, later in 
this chapter, for more 
information)

You combine these flags using the standard C bitwise-OR (|) operator. For 
example, many DLLs request notification when Windows Help is about to 
initialize or terminate them. The sample LDLLHandler function requests this 
notification and asks to be notified when the user has moved the input focus to or 
from Windows Help. It processes the DW_WHATMSG message as follows:
case DW_WHATMSG: 
     return DC_INITTERM | DC_ACTIVATE;

The remainder of this section looks at the different Windows Help messages that 
LDLLHandler processes.



   Microsoft Windows Help Authoring Guide

DC_INITTERM Flag
The DC_INITTERM flag tells Windows Help that the DLL should receive 
initialization and termination messages.

DW_INIT

After LDLLHandler returns a DC_INITTERM flag, Windows Help sends a 
DW_INIT message. This message tells LDLLHandler to perform any required 
initialization operations (such as initializing variables or loading strings). The 
lParam1 and lParam2 parameters are not used.

If LDLLHandler returns FALSE, Windows Help unloads the DLL and stops 
sending messages. If LDLLHandler returns TRUE, the DLL remains loaded.

In the DLLDEMO sample, LDLLHandler returns TRUE for this message.

DW_TERM

When the user ends a Windows Help session, Windows Help sends a 
DW_TERM message. This message tells LDLLHandler to perform any required
cleanup operations before the DLL is unloaded from memory. The lParam1 and 
lParam2 parameters are not used, and the return value has no meaning.

DC_MINMAX Flag
The DC_MINMAX flag tells Windows Help that the DLL should receive 
messages when the user minimizes, maximizes, or resizes the Windows Help 
window.

DW_MINMAX

Windows Help sends the DLL a DW_MINMAX message if the user minimizes 
or maximizes the context window.

The lParam1 parameter to DW_MINMAX indicates which operation was 
performed: 1L for minimized or 2L for maximized.

The lParam2 parameter is not used.

If LDLLHandler returns TRUE for this message, Windows Help continues 
sending this message throughout the remainder of the session; if LDLLHandler 



Writing DLLs for Windows Help§   20-13

returns FALSE, Windows Help stops sending it.

DW_SIZE

Windows Help sends the DLL a DW_SIZE message if the user resizes the 
context window.

The lParam1 message specifies the horizontal size of the window in the low-
order word and the vertical size in the high-order word.

The lParam2 parameter is not used.

If LDLLHandler returns TRUE for this message, Windows Help continues 
sending this message throughout the remainder of the session; if LDLLHandler 
returns FALSE, Windows Help stops sending it.

DC_JUMP Flag
The DC_JUMP flag tells Windows Help that the DLL should receive messages 
when the user executes a jump in the Help file.

DW_STARTJUMP

Windows Help sends the DLL a DW_STARTJUMP message after the user 
executes a jump. The parameters to DW_STARTJUMP are not used.

If LDLLHandler returns TRUE for this message, Windows Help continues 
sending this message throughout the remainder of the session; if LDLLHandler 
returns FALSE, Windows Help stops sending it.

DW_ENDJUMP

Windows Help sends the DLL a DW_ENDJUMP message after it displays the 
jump-destination topic.

The lParam1 parameter specifies the byte offset of that topic within the Help 
file’s file system. This value can be passed to the LSeekHf function (defined in 
the DLL.H file) to perform a seek to that topic within the file.

The lParam2 parameter specifies the position of the scroll box in the topic. This 
value can be used in any of the standard Windows scrolling functions that accept 
scroll-position parameters.



   Microsoft Windows Help Authoring Guide

If LDLLHandler returns TRUE for this message, Windows Help continues 
sending this message throughout the remainder of the session; if LDLLHandler 
returns FALSE, Windows Help stops sending it.

DW_CHGFILE

Windows Help sends the DLL a DW_CHGFILE message if the user selects 
Open from the File menu to change .HLP files or jumps to a topic in a 
different .HLP file. If the message is the result of a jump to a new file, Windows 
Help sends the DW_CHGFILE message between the DW_STARTJUMP and 
DW_ENDJUMP messages.

The lParam1 parameter specifies a long pointer to the .HLP filename. The 
lParam2 parameter is not used.

If LDLLHandler returns TRUE for this message, Windows Help continues 
sending this message throughout the remainder of the session; if LDLLHandler 
returns FALSE, Windows Help stops sending it.

DC_ACTIVATE Flag
The DC_ACTIVATE flag tells Windows Help that the DLL should receive a 
DW_ACTIVATE message when the user gives either Windows Help or another 
application the input focus.

DW_ACTIVATE

The lParam1 parameter to the DW_ACTIVATE message specifies whether 
Windows Help received (nonzero LONG value) or lost (0L) the input focus. The 
lParam2 parameter is not used.

If LDLLHandler returns TRUE for this message, Windows Help continues 
sending this message throughout the remainder of the session; if LDLLHandler 
returns FALSE, Windows Help stops sending it. xe "DLLs:Windows Help event 
notification"§xe "LDLLHandler function:Windows Help event notification"§



Writing DLLs for Windows Help§   20-15

Windows Help provides DLL authors 
with access to 16 of its internal 
functions. These functions perform 
operations in the internal .HLP file 
system, get global information about 
the currently open Help file, or display

information in a standard Windows Help dialog box. They are documented in the 
DLL.H header file.xe "DLL.H header file"§xe "DLLs:calling internal Windows 
Help functions"§

In this section, you’ll learn how to access six of these internal functions. An 
overview of the mechanism is as follows:

n Windows Help sends a DW_WHATMSG message to the DLL.
n The LDLLHandler function in the DLL processes the 
DW_WHATMSG message by returning a DC_CALLBACKS flag.
n Windows Help sends a DW_CALLBACKS message specifying a 
pointer to an array of Windows Help internal functions.
n The LDLLHandler function uses the pointer passed in the 
DW_CALLBACKS message to obtain pointers to the Windows Help 
functions it will use.

The ExportBag function in the DLLDEMO.C sample file is used for the 
examples in this section. ExportBag copies a file from the .HPJ internal file 
system to an 
MS-DOS file. (The file from the .HPJ file system is initially stored using an entry 
in the [BAGGAGE] section of the DLLDEMO.HPJ project file.) You can use the
mechanism illustrated in this example to access files stored in any .HLP file 
system.

Sample Code

ExportBag is executed from a two topic entry macros in the sample 
DLLDEMO.HLP Help file. Like the HelloWorld function earlier in this chapter, 
ExportBag is registered as a Help macro in the DLLDEMO.HPJ Help project 
file as follows:
RegisterRoutine("dlldemo","ExportBag","SSSS")

The two entry macros in DLLDEMO.RTF that execute ExportBag are coded as 
follows:

Calling Windows Help Internal 
Functions



   Microsoft Windows Help Authoring Guide

! ExportBag(qchPath, "dlldemo.hpj", "decomp.hpj", qError )
! ExportBag(qchPath, "dlldemo.rtf", "decomp.rtf", qError )

Note

To debug your DLL or observe any of the operations described 
in this section, you can compile DLLDEMO for the CodeView for 
Windows symbolic debugger and open the DLL in CodeView while 
you view the sample title. See the DLLDEMO.C file for specific 
instructions.

Accessing Windows Help Functions (DW_CALLBACKS)

If a DLL wants access to Windows Help internal functions, its LDLLHandler 
function handles the DW_WHATMSG message by returning a 
DC_CALLBACKS flag. In DLLDEMO.C, the LDLLHandler function requests
access as follows:xe "LDLLHandler function:accessing internal Windows Help 
function"§
case DW_WHATMSG:
           return DC_INITTERM | DC_CALLBACKS;

When it gets this flag, Windows Help sends a DW_CALLBACKS message to the
DLL. The lParam1 parameter is a long pointer to an array containing pointers to 
each of the 16 internal Windows Help functions. The DLL.H file defines 
symbolic names for indexing each function in the array.

In processing the DW_CALLBACKS message, the LDLLHandler function calls
a function named GetCallBacks to specify which functions it wants to access. 
GetCallBacks is defined as follows in DLLDEMO:
PUBLIC     BOOL PASCAL EXPORT GetCallBacks(
VPTR     VPtr,
LONG     lVersion)
{

     // hfs level:
     lpfn_HfsOpenSz       = VPtr[HE_HfsOpenSz];
     lpfn_RcCloseHfs      = VPtr[HE_RcCloseHfs];
     lpfn_RcLLInfoFromHfs = VPtr[HE_RcLLInfoFromHfs];

     // bag level routines
     lpfn_FAccessHfs =  VPtr[HE_FAccessHfs];
     lpfn_HfOpenHfs  =  VPtr[HE_HfOpenHfs];
     lpfn_LcbReadHf  =  (LPFN_LCBREADHF) VPtr[HE_LcbReadHf];
     lpfn_RcCloseHf  =  VPtr[HE_RcCloseHf];
     return TRUE;



Writing DLLs for Windows Help§   20-17

}

The VPtr parameter in GetCallBacks is the lParam1 pointer passed by the 
DW_CALLBACKS message from Windows Help. The GetCallBacks function 
gets pointers to the following Windows Help internal functions, which it uses 
later in the example.

Function What it does

HfsOpenSz Opens the .HLP file system (the compound file containing 
the files internal to the Help file)

RcCloseHfs Closes the open .HLP file system

RcLLInfoFromHfs Maps a handle to the open .HLP file system (returned by 
HfsOpenSz) to low-level file information

FAccessHfs Determines whether a file within the .HLP file system is 
accessible

HfOpenHfs Opens a file within the .HLP file system

LcbReadHf Reads bytes from a file within the .HLP file systemxe 
"LDLLHandler function:accessing internal Windows Help 
function"§



   Microsoft Windows Help Authoring Guide

Note

This sample code does not take multiple instances of Windows 
Help into account. If more than one instance is started, the DLL 
receives different pointers to these callback functions—one pointer for 
each instance. You must keep track of which pointer is associated with 
each Windows Help instance. One way to do this is to create an array 
associating the task with the callback pointer.

Copying Files from the .HLP File System

Now that DLLDEMO has access to the Windows Help functions it needs, it is 
ready to copy a file from the .HLP file system. The ExportBag function performs
this operation. ExportBag uses the following variables:

PUBLIC              BOOL PASCAL EXPORT ExportBag(
LPSTR               lszHLPname,
LPSTR   lszBagFName,
LPSTR   lszExportName,
QME          qError)
{
               HANDLE           hfsHlp; // handle to .HLP file
               HANDLE           hfBag; // file handle to bag file
               HANDLE           hFile; // handle to output file
               BOOL     fClean = TRUE; // if set, Delete file in Error state Machine.
               DWORD  dwBytesRead; // input bytes read
               HANDLE           hMem; // handle to copy buffer
               LPBYTE           lpMem; // ptr to copy buffer
               OFSTRUCT ofs;

Getting a Handle to the .HLP File System
First, ExportBag uses the HfsOpenSz function to get a handle to the .HLP file 
system, as follows:

if ((hfsHlp = (*lpfn_HfsOpenSz)(lszHLPname, fFSOpenReadOnly)) == NULL)
    {
    qError->fwFlags = fwMERR_ABORT;
    qError->wError = wMERR_PARAM;
    goto ExitBag;
    }

The lszHLPname parameter identifies the .HLP file for which it wants the 
handle. This parameter takes its value from Windows Help’s qchPath internal 
variable.

As you’ll recall, ExportBag is executed from two entry macros in the 



Writing DLLs for Windows Help§   20-19

DLLDEMO.HLP Help file. The DLLDEMO.HPJ project file for that Help file 
includes a RegisterRoutine macro that registers ExportBag as a Help authoring 
macro. When ExportBag is run from the macros, qchPath is given as the first 
parameter to ExportBag.

Verifying the .HLP File
Next, ExportBag makes sure the baggage file within the .HPJ file system is 
valid, as follows:

if (((*lpfn_FAccessHfs)(hfsHlp, lszBagFName, NULL)) == FALSE)
    {
    qError->fwFlags = fwMERR_RETRY;
    qError->wError = wMERR_MESSAGE;
    lstrcpy(qError->rgchError, "Could not open baggage file `");
    lstrcat(qError->rgchError, lszBagFName);
    lstrcat(qError->rgchError, "'.");
    goto ExitBag;
    }

The lszBagFName parameter to ExportBag gives this filename. Like the 
lszHLPname parameter, the baggage filename in lszBagFName is passed from 
the entry macros encoded in the DLLDEMO.HLP file. However, the baggage 
filename is hard-coded in the macro rather than obtained from a Windows Help 
internal variable.

In this and other examples, the return code rc would normally be serviced in a 
common error routine at label UNDOstateEXIT. This error routine would 
inform the user of the problem. For simplicity, this error routine has been omitted 
from DLLDEMO.C.

Copying the Baggage File
ExportBag now opens the baggage file for reading, as folows: 

if ((hfBag = (*lpfn_HfOpenHfs)(hfsHlp, lszBagFName, fFSOpenReadOnly))
    == NULL)
    {
    qError->fwFlags = fwMERR_ABORT;
    qError->wError = wMERR_ERROR;
    goto ExitBag;
    }

It creates a buffer to improve efficiency in the copy:

if ((hMem = GlobalAlloc(GMEM_MOVEABLE,
         (DWORD)wCOPY_SIZE)) == NULL)
    {
    qError->fwFlags = fwMERR_ABORT;



   Microsoft Windows Help Authoring Guide

    qError->wError = wMERR_MEMORY;
    goto ExitBag;
    }

lpMem = GlobalLock(hMem);

To make sure the MS-DOS file it’s copying to is not already present, ExportBag 
calls the Windows API OpenFile. This function executes an MS-DOS function to
purge the filename ExportBag is using:

OpenFile(lszExportName, &ofs, OF_DELETE);

ExportBag creates the MS-DOS file it’s copying to and obtains a handle to the 
new file, as follows:

if ((hFile = _lcreat(lszExportName,0)) == -1)
    {
    qError->fwFlags = fwMERR_ABORT;
    qError->wError = wMERR_ERROR;
    goto ExitBag;
    }

Now ExportBag starts the write loop that copies the baggage file to the new 
MS-DOS file, as follows:

do  {
    if ((dwBytesRead =
         (*lpfn_LcbReadHf)(hfBag, lpMem, wCOPY_SIZE)) == -1L)
         {
         qError->fwFlags = fwMERR_ABORT;
         qError->wError = wMERR_ERROR;
         goto ExitBag;
         }
    if (_lwrite(hFile, lpMem,(WORD) dwBytesRead) != (WORD) dwBytesRead)
         {
         qError->fwFlags = fwMERR_ABORT | fwMERR_RETRY;
         qError->wError = wMERR_MESSAGE;
         lstrcpy(qError->rgchError, "Out of disk space.");
         goto ExitBag;
         }
    } while (dwBytesRead == wCOPY_SIZE);

ExportBag reads the size of the buffer it created until it reaches the end of the 
baggage file. The end-of-file condition is indicated when the LcbReadhf 
function returns –1L. ExportBag writes to the new MS-DOS file using the 
standard Windows _lwrite function.

When ExportBag has finished writing the MS-DOS file, it closes the baggage 
and MS-DOS files and cleans up its memory, as follows:

ExitBag:
        if (hfBag != NULL)
    (*lpfn_RcCloseHf)(hfBag);



Writing DLLs for Windows Help§   20-21

if (hfsHlp != NULL)
    (*lpfn_RcCloseHfs)(hfsHlp);
if (hMem != NULL)
    {
    GlobalUnlock(hMem);
    GlobalFree(hMem);
    }
if (hFile != -1)
    _lclose(hFile);
if (qError->wError != wMERR_NONE && fClean)

   OpenFile(lszExportName, &ofs, OF_DELETE);

In Windows Help version 3.1 you can create embedded windows to extend the 
functionality of Windows Help by placing objects in a fixed-size window under 
the control of a DLL. For example, you can create a DLL to display animation 
sequences or to play audio segments in an embedded window. However, in 
version 3.1 you cannot create an embedded window that functions as a hot spot. 
This section explains how to write custom DLLs for Windows Help.xe 
"Embedded window:controlling with DLLs:creating window"§xe "DLLs:calling 
internal Windows Help functions"§

Creating Embedded Windows

To create an embedded window, authors insert an embedded window reference in
the RTF source file. This reference has the following general form:xe 
"DLLs:embedded-window"§

{ewx DLL-name, window-class, author-data}

Parameter Description

x A character specifying the alignment of the window: l for a left-
aligned window, r for a right-aligned window, or c for a character-
aligned window.

DLL-name The name of the DLL that controls the embedded window. The 
file name should not include an extension or be fully qualified, but
it can include a relative path. Windows Help assumes .DLL 
or .EXE to be the default extension.

Writing DLLs for Embedded Windows



   Microsoft Windows Help Authoring Guidewindow-class The name of the embedded window class as defined in the source 
code for the DLL.

author-data An arbitrary string, which Windows Help passes to the embedded 
window when it creates the window. This string can be one or 
more substrings separated by any punctuation mark except a 
comma. The DLL is responsible for parsing this string. The string 
is terminated by the closing brace (})xe "Embedded 
window:controlling with DLLs:creating window"§

The following example shows a valid embedded window reference:
{ewl FADE, AmfWnd, clipbrd.amf}

How Embedded Windows Work in Help

Windows Help displays embedded windows within topic windows. To Windows 
Help, an embedded window is simply a child window of that topic window. Users
cannot minimize, maximize, or resize an embedded window. Embedded windows
cannot be used as hot spots. However, you can include hot spots in an embedded 
window if they are controlled by the DLL, but users will not be able to use the 
keyboard equivalents to access the hot spots. That is because embedded windows 
cannot receive the input focus, which means they cannot process keystrokes. So, 
you should not place anything in an embedded window that requires keyboard 
input from users.

Windows Help positions the embedded window using the justification character 
(left, right, or character) specified by the author in the embedded window 
reference. The embedded window DLL is expected to display the information in 
the window and resize the window appropriately. Help expects the window size 
to remain fixed as long as the topic is displayed. The window element and DLL 
determine the size and content of the embedded window, and Help arranges the 
other elements of the topic around the embedded window. 

Windows Help displays embedded windows only when necessary—while the 
topic containing the embedded window is being displayed. However, an 
embedded window may exist while it is not being displayed (if the user scrolls the
topic past the embedded window, for example). Because it is part of a specific 



Writing DLLs for Windows Help§   20-23

topic, an embedded window goes away when the user displays a different topic.

Initialization
Windows Help creates embedded windows with window style WS_CHILD and a
default size. It initializes the DLL for an embedded window before it displays the 
window.xe "Embedded window:controlling with DLLs:initializing DLL"§xe 
"DLLs:initializing for embedded window"§

When Windows Help creates the embedded window, it passes two strings in the 
WM_CREATE message. The lparam parameter points to a CREATESTRUCT 
structure, and the lpCreateParams field of the CREATESTRUCT structure 
points to a second structure defined as follows in the DLL.H header file:
typedef  struct tagCreateInfo

{
short idMajVersion;

 short idMinVersion;
 LPSTR lpstrFileName;

LPSTR lpstrAuthorData;
HANDLE hfs;
DWORD coForeground;
DWORD coBackground;
}    CREATEINFO;

The fields in the structure are defined in the following table.

Field Use

idMajVersion,
idMinVersion

Identifies the version of Windows Help (and the version of the 
CREATESTRUCT structure used for embedded windows in 
that version of Windows Help). Currently, these fields are 0. If 
the idMinVersion field is a value other than 0, additional 
interfaces may be available to DLLs, but all the interfaces 
described in this chapter are still supported.

The DLL should always verify that the value in the 
idMajVersion and idMinVersion fields of the 
CREATESTRUCT structure are 0. If they are not, the DLL 
might not work with that version of Windows Help.

lpstrFileName Points to the fully qualified name of the .HLP file containing the
embedded window. This field will be NULL if the data is not 
available. If the DLL uses the string contained in this field, it 
should make a copy of the string.



   Microsoft Windows Help Authoring Guide

lpstrAuthorData Points to the author-data parameter in the ewl, ewc, or ewr 
reference from the source RTF file. This field will be NULL if 
the data is not available. If the DLL uses the string contained in 
this field, it should make a copy of the string.

hfs Specifies a handle to the file system for the .HLP file. 

CoForeground,
CoBackground

Specify the foreground and background colors of the main 
Windows Help window. If the embedded window uses the same
colors as the main Windows Help window, the DLL can use the 
color values in these fields to set those colors in the embedded 
window.

Embedded Window Behavior
While a topic is being displayed, Windows Help creates embedded windows 
when it needs to lay them out and destroys them when they are no longer needed. 
The window can be created and destroyed, then created again if necessary, while 
Windows Help tries to lay out the embedded window object. If you load 
information, you might want to do so during WM_SHOWWINDOW processing 
so that you don’t have to load this information twice.

An embedded window may exist while it is not being displayed (for example, if 
the topic requires scrolling and the embedded window resides in the portion not 
currently displayed in the Help window). Do not set the window style to 
WS_VISIBLE or call the ShowWindow function during WM_CREATE 
processing. Windows Help displays the window when necessary.

As an embedded window DLL processes a WM_CREATE message, it is 
expected to set up any window styles the window uses and resize the window 
appropriately.xe "Embedded window:controlling with DLLs:initializing"§

Windows Help positions the window using the justification character (left, right, 
or character) authored into the RTF file. Windows Help expects the window size 
to remain fixed during the window’s lifetime.

Because it is a child window of the main topic window, an embedded window 
does not need to destroy itself; it will be destoyed when the parent window is 
destroyed.xe "Embedded window:controlling with DLLs:destroying window"§xe 



Writing DLLs for Windows Help§   20-25

"Embedded window:controlling with DLLs:initializing DLL"§xe 
"DLLs:initializing for embedded window"§

Message Processing for Embedded Windows

Embedded windows receive most standard Windows messages, including mouse 
and WM_PAINT messages. Embedded windows should not take the input focus; 
therefore, they do not need to process keystrokes.

Embedded window DLLs must also process the following messages, which are 
specifically defined for use with embedded windows:xe "Embedded 
window:controlling with DLLs:message processing"§xe "DLLs:processing 
embedded window messages"§

n EWM_RENDER (0x706A)
n EWM_QUERYSIZE (0x706B)
n EWM_ASKPALETTE (0x706C)

EWM_RENDER
Windows Help sends the EWM_RENDER message to an embedded window to 
get information about the image in the window. It uses this information when 
printing the image or placing it in the Clipboard. The wParam parameter to 
EWM_RENDER indicates the type of information returned by the message, and 
the LOWORD of the return value contains a handle to this information. Possible 
wParam values and return values are shown in the following table.xe "Embedded
window:controlling with DLLs:getting rendering information"§

wParam Return Value

CF_TEXT Sharable global handle to a null-terminated ASCII string. 
Windows Help frees this handle.

CF_BITMAP Handle to a bitmap. Windows Help removes this handle.xe 
"EWM_RENDER window message:in embedded windows"§



   Microsoft Windows Help Authoring Guide

EWM_QUERYSIZE
Windows Help sends the EWM_QUERYSIZE message to an embedded window 
to obtain the size of the window. The wParam parameter is a handle to the device
context for the window. The lParam parameter points to a POINT structure. The 
embedded window DLL should fill in the x field of the structure with the 
window’s height and the y field of the structure with the window’s width. 
Windows Help uses this information when laying out the topic in the topic 
window, when printing the topic, or when placing it in the Clipboard.xe 
"EWM_QUERYSIZE window message:in embedded windows"§xe "Embedded 
window:controlling with DLLs:getting window size"§

EWM_ASKPALETTE
Windows Help sends the EWM_ASKPALETTE message to all embedded 
windows displayed within a topic to get information about the palettes used in 
each window. The wParam and lParam parameters are not used.xe 
"EWM_PALETTE window message"§xe "Palettes:querying information in 
DLL"§xe "Embedded window:controlling with DLLs:painting"§

When an embedded window receives an EWM_ASKPALETTE message, it 
should return a handle to the palette that it uses. Windows Help then selects the 
most appropriate palette for use in that topic. Usually, this palette is the one used 
for the first embedded window in the currently displayed part of the topic.

Before the DLL repaints an embedded window, it should send an 
EWM_ASKPALETTE message to the parent window to determine which palette 
to use. The following code fragment illustrates how to do this:
hpal = (HPALETTE)SendMessage(GetParent(hwnd), EWM_ASKPALETTE, 0, 0L)xe 
"EWM_PALETTE window message"§xe "Palettes:querying information in DLL"§xe "Embedded 
window:controlling with DLLs:message processing"§xe "DLLs:processing embedded window 
messages"§xe "Embedded window:controlling with DLLs:painting"§

Sample Embedded Window DLL

In this section, we’ll analyze more source code in the sample DLL, and point out 
the functions and definitions required for embedded windows. The EWDEMO.C 
file contains the source code for a sample embedded window. The sample DLL 
displays a dynamic list of network printers in an embedded window. You can use 
this sample code as a template for creating your own embedded window DLLs. 
xe "Embedded window:controlling with DLLs:example of"§xe "DLLs:embedded 
window, example of"§



Writing DLLs for Windows Help§   20-27

Functions
The DLL consists of four functions: LibMain, WEP, PrinterListProc, and 
InitPrinterList. LibMain is the standard DLL function that registers the window
class, and WEP is the standard function that terminates the DLL. 
PrinterListProc performs the message processing, including processing for the 
embedded window messages EWM_RENDER and EWM_QUERYSIZE. It 
also calls InitPrinterList to initialize the printer list after it receives a 
WM_CREATE message from Windows Help.

Initialization (WM_CREATE)
The PrinterListProc function is responsible for creating an embedded window 
when the window first receives a WM_CREATE message. The type for the 
structure passed in the WM_CREATE message is defined in DLL.H, as shown 
below:
typedef struct
  {
       short   idMajVersion;
       short   idMinVersion;
       LPSTR   szFileName;
       LPSTR   szAuthorData;
       HANDLE  hfs;
       DWORD   coFore;
       DWORD   coBack;  } 
 EWDATA, FAR * QEWDATA;

As noted earlier, the szFileName field points to the relative path of the .HLP file, 
and the szAuthorData field points to the author-data parameter in the ewl, ewc, 
or ewr command from the source RTF file. The local variable qci is defined 
using this type.

PrinterListProc first takes the information passed in the lParam parameter to 
WM_CREATE and copies it into the fields of the qci structure, as follows:
case WM_CREATE:
      qci = (QCI)((CREATESTRUCT FAR *)lParam)->lpCreateParams;

      /*------------------------------------------------------------*\
      | Save the WM_CREATE information.
      \*------------------------------------------------------------*/
      lstrcpy( rgchFileName, qci->szFileName );
      lstrcpy( rgchAuthorText, qci->szAuthorData );

Next, PrinterListProc adds a border to the embedded window and initializes the 
printer list, as follows:
/*------------------------------------------------------------*\
      | Add a border to this window.
      \*------------------------------------------------------------*/



   Microsoft Windows Help Authoring Guide

      SetWindowLong( hwnd, GWL_STYLE,
     GetWindowLong( hwnd, GWL_STYLE ) | WS_BORDER );

      /*------------------------------------------------------------*\
      | Initialize the printer list.  This could be updated more
      | dynamically, say on each WM_PAINT message.
      \*------------------------------------------------------------*/
      InitPrinterList();

      return 0L;

Painting (WM_PAINT)
PrinterListProc is also responsible for painting the embedded window. When 
the window receives a WM_PAINT message, PrinterListProc lists the names of
the printers in the list initialized by InitPrinterList, as follows:
case WM_PAINT:
      BeginPaint( hwnd, &ps );
      GetTextMetrics( ps.hdc, &tm );
      SetTextColor( ps.hdc, GetSysColor( COLOR_WINDOWTEXT ) );
      SetBkColor( ps.hdc, GetSysColor( COLOR_WINDOW ) );
      for (irgch = 0; irgch  MAX_PRINTERS && rgrgchPrinters[irgch][0];
           irgch++)
           TextOut( ps.hdc, tm.tmMaxCharWidth/2,
                    (tm.tmHeight + tm.tmExternalLeading)/2 +
                    irgch*(tm.tmHeight + tm.tmExternalLeading),
                    rgrgchPrinters[irgch], lstrlen(rgrgchPrinters[irgch]) );
      EndPaint( hwnd, &ps );
      return 0L;

Obtaining Rendering Information (EWM_RENDER)
PrinterListProc also processes the EWM_RENDER message sent by Windows 
Help. The wParam parameter determines the type of rendering information that 
PrinterListProc returns. This parameter has the value CF_BITMAP or 
CF_TEXT.xe "EWM_RENDER window message:in example"§

CF_BITMAP

If wParam is CF_BITMAP, PrinterListProc creates a bitmap listing the system 
printers and returns a handle to this bitmap (hbm). PrinterListProc gets the 
information it needs to create the bitmap in two ways:

n Copying the values passed in the lParam parameter to the 
EWM_RENDER message.

n Sending an EWM_QUERYSIZE message to the embedded window 
and obtaining its size.



Writing DLLs for Windows Help§   20-29
The lParam parameter points to a RENDERINFO structure. Type 
RENDERINFO is defined (in DLL.H), as follows:
typedef struct
  {
  RECT  rc;
  HDC   hdc;
  } RENDERINFO, FAR *QRI;

To create the bitmap, PrinterListProc copies the device context from lParam. It
then obtains the size required for the bitmap by sending an EWM_QUERYSIZE 
message, as follows:
switch( wParam )
        {
        case CF_BITMAP:

  /*------------------------------------------------------------*\
  | Prepare a bitmap image of the printer list.  This will
  | appear in a similar manner as the layout, but we will need
  | to draw the border explicitly here, as well as making sure
  | the background is filled in correctly.  We must use the
  | default colors for this hdc.
  \*------------------------------------------------------------*/

qri = (QRI)lParam;
       hdc = CreateCompatibleDC( NULL );

       if (hdc)
       {
            hfont = 0;

            /*------------------------------------------------------------*\
            | Create a monochrome bitmap for the DC, sized for the screen.
            \*------------------------------------------------------------*/
            SendMessage( hwnd, EWM_QUERYSIZE, hdc, (long)(LPPOINT)&pt );
            rc.left = 0;
            rc.top = 0;
            rc.right = pt.x;
            rc.bottom = pt.y;

PrinterListProc creates the bitmap using the default foreground and background
colors, but it draws the window border explicitly, as follows:
hbm = CreateCompatibleBitmap( qri->hdc, pt.x, pt.y );
            if (hbm)
            {
                 hbmDefault = SelectObject( hdc, hbm );
                 /*------------------------------------------------------*\
                 | Clear out the bitmap.
                 \*------------------------------------------------------*/
                 hbrush = CreateSolidBrush( GetBkColor( hdc ) );
                 if (hbrush)
                 {
                      FillRect( hdc, &rc, hbrush );
                      DeleteObject( hbrush );



   Microsoft Windows Help Authoring Guide

                 }

                 Rectangle( hdc, rc.left, rc.top, rc.right, rc.bottom );

                 GetTextMetrics( hdc, &tm );
                 for (irgch = 0; irgch  MAX_PRINTERS &&
                     rgrgchPrinters[irgch][0]; irgch++)
                 TextOut( hdc, tm.tmMaxCharWidth/2,
                          (tm.tmHeight + tm.tmExternalLeading)/2 +
                          irgch*(tm.tmHeight + tm.tmExternalLeading),
                          rgrgchPrinters[irgch],
                          lstrlen( rgrgchPrinters[irgch] ) );
              /*----------------------------------------------------------*\
              | At this point, hbm is the desired bitmap, sized for a
              | screen display.  This will be stretched as needed for
              | the target display.
              \*----------------------------------------------------------*/
              hbm = SelectObject( hdc, hbmDefault );
        }
       else
        {
              /*---------------------------------------------------------*\
              | Not enough memory.  Clean up and return NULL.
              \*---------------------------------------------------------*/
              hbm = NULL;
        }

        DeleteDC( hdc );
    }

     lReturn = (long)hbm;
     break;

PrinterListProc creates the bitmap using the default foreground and background
colors for the device context, but it draws the window border explicitly, as 
follows:
hdc = CreateCompatibleDC( qri->hdc );
       /*------------------------------------------------------------*\
       | Make hdc really compatible with the source hdc.
       \*------------------------------------------------------------*/
       if (hdc)
       {
            SetTextColor( hdc, GetTextColor( qri->hdc ) );
            SetBkColor( hdc, GetBkColor( qri->hdc ) );
            hbrushSource = SelectObject( qri->hdc,
                                         GetStockObject( NULL_BRUSH ) );
            if (hbrushSource)
                 SelectObject( hdc, hbrushSource );
            hpenSource = SelectObject(qri->hdc, GetStockObject(NULL_PEN) );
            if (hpenSource)
                 SelectObject( hdc, hpenSource );
       }

       hbm = CreateCompatibleBitmap( qri->hdc, rc.right, rc.bottom );
       if (hdc && hbm && (hbmDefault = SelectObject( hdc, hbm )))
       {
            GetTextMetrics( hdc, &tm );



Writing DLLs for Windows Help§   20-31

            for (irgch = 0; irgch  MAX_PRINTERS && rgrgchPrinters[irgch][0];
                 irgch++)
                 TextOut( hdc, tm.tmMaxCharWidth/2,
                          (tm.tmHeight + tm.tmExternalLeading)/2 +
                          irgch*(tm.tmHeight + tm.tmExternalLeading),
                          rgrgchPrinters[irgch],
                          lstrlen( rgrgchPrinters[irgch] ) );
            hbm = SelectObject( hdc, hbmDefault );
       }
       .
       .
       .
       lReturn = (long)hbm;
       break;

CF_TEXT

If wParam is CF_TEXT, PrinterListProc simply creates an ASCII list of the 
system printers in a Clipboard compatible format, as follows:
case CF_TEXT:
       /*------------------------------------------------------------*\
       | List out the printers in a format suitable for the Clipboard.
       | Since this list will be embedded in the text of the topic,
       | use blank lines for separators.
       \*------------------------------------------------------------*/
       gh = GlobalAlloc( GMEM_MOVEABLE | GMEM_NOT_BANKED,
                         sizeof(rgrgchPrinters) );
       lReturn = (long)gh;
       if (gh)
       {
            sz = GlobalLock( gh );
            lstrcpy( sz, "\r\n" );
            for (irgch = 0; irgch  MAX_PRINTERS && rgrgchPrinters[irgch][0];
                 irgch++)
            {
                 lstrcat( sz, rgrgchPrinters[irgch] );
                 lstrcat( sz, "\r\n" );
            }
            GlobalUnlock( gh );
       }
       break;

Obtaining the Window Size (EWM_QUERYSIZE)
The PrinterListProc function is also responsible for processing 
EWM_QUERYSIZE messages. These messages can come from Windows Help, 
or they can be sent by the code in PrinterListProc that processes the 
EWM_RENDER message.xe "EWM_QUERYSIZE window message:in 
example"§

As described earlier, the EWM_QUERYSIZE message returns the dimensions of 



   Microsoft Windows Help Authoring Guide

the embedded window. The wParam parameter to EWM_QUERYSIZE is the 
device context for the window display, and the lParam parameter points to a 
POINT structure that returns the length and height of the window display, as 
shown below:
case EWM_QUERYSIZE:
      /*-----------------------------------------------------------------*\
      *   Size query message from Windows Help
      *   wParam is the target hdc.
      *   wLong is the address of the point to return size in.
      *   Return non-zero to indicate that we did something.
      \*-----------------------------------------------------------------*/
      hfont = SelectObject( (HDC)wParam, GetStockObject( SYSTEM_FONT ) );
      GetTextMetrics( (HDC)wParam, &tm );
      ((LPPOINT)lParam)->x = ((LPPOINT)lParam)->y = 0;
      for (irgch = 0; irgch < MAX_PRINTERS && rgrgchPrinters[irgch][0];
            irgch++)
          {
          DWORD dwExt = GetTextExtent( (HDC)wParam, rgrgchPrinters[irgch], 
            lstrlen( rgrgchPrinters[irgch] ) );
          ((LPPOINT)lParam)->x = max( (WORD)((LPPOINT)lParam)->x, LOWORD(dwExt) );
          ((LPPOINT)lParam)->y += HIWORD(dwExt);
          }
      ((LPPOINT)lParam)->x += tm.tmMaxCharWidth;
      ((LPPOINT)lParam)->y += tm.tmHeight + tm.tmExternalLeading;
      if (hfont)
        SelectObject( (HDC)wParam, hfont );
      return 1;
    }

xe "EWM_QUERYSIZE window message:in example"§xe "DLLs:embedded-window, example of"§xe
"Embedded window:controlling with DLLs:example of"§ 

Ó 1993 Microsoft Corporation, All rights reserved



Writing DLLs for Windows Help§   20-33


	Writing DLLs for Windows Help
	Creating Custom Help Macros
	Notifying DLLs of Windows Help Events
	Calling Windows Help Internal Functions
	Writing DLLs for Embedded Windows
	n Through DLL functions registered as Help macros in a Help Project file. These functions can then be used in hot spots and macro footnotes in topic files.
	n Through embedded window (ew) references in topic files.
	Registering DLL Functions as Help Macros
	n DLL filename
	n Function name
	n Data type returned by the function
	n Number and type of function parameters

	How Help Locates DLLs
	n Help’s current directory
	n The MS-DOS current directory
	n The user’s Windows directory
	n The Windows SYSTEM directory
	n The directory containing WINHELP.EXE
	n The directories listed in the user’s PATH environment variable
	n The directories specified in WINHELP.INI
	n Use unique names for all DLLs accessed by the Help file.
	n When installing your application on a user’s hard disk drive, your setup program should copy all custom DLLs to the directory where Help is located.
	n If your product is distributed on CD-ROM, copy WINHELP.EXE and any custom DLLs to the user’s hard disk drive.
	n Define a WINHELP.INI entry for each custom DLL that your Help file is using so that Help knows where to locate them.

	Windows Help Internal Variables
	List of Variables
	Error Handling
	fwFlags
	wError
	rgchError

	DC_INITTERM Flag
	DW_INIT
	DW_TERM

	DC_MINMAX Flag
	DW_MINMAX
	DW_SIZE

	DC_JUMP Flag
	DW_STARTJUMP
	DW_ENDJUMP
	DW_CHGFILE

	DC_ACTIVATE Flag
	DW_ACTIVATE
	n Windows Help sends a DW_WHATMSG message to the DLL.
	n The LDLLHandler function in the DLL processes the DW_WHATMSG message by returning a DC_CALLBACKS flag.
	n Windows Help sends a DW_CALLBACKS message specifying a pointer to an array of Windows Help internal functions.
	n The LDLLHandler function uses the pointer passed in the DW_CALLBACKS message to obtain pointers to the Windows Help functions it will use.


	Sample Code
	Accessing Windows Help Functions (DW_CALLBACKS)
	Copying Files from the .HLP File System
	Getting a Handle to the .HLP File System
	Verifying the .HLP File
	Copying the Baggage File

	Creating Embedded Windows
	How Embedded Windows Work in Help
	Initialization
	Embedded Window Behavior

	Message Processing for Embedded Windows
	n EWM_RENDER (0x706A)
	n EWM_QUERYSIZE (0x706B)
	n EWM_ASKPALETTE (0x706C)
	EWM_RENDER
	EWM_QUERYSIZE
	EWM_ASKPALETTE

	Sample Embedded Window DLL
	Functions
	Initialization (WM_CREATE)
	Painting (WM_PAINT)
	Obtaining Rendering Information (EWM_RENDER)
	CF_BITMAP

	n Copying the values passed in the lParam parameter to the EWM_RENDER message.
	n Sending an EWM_QUERYSIZE message to the embedded window and obtaining its size.
	CF_TEXT

	Obtaining the Window Size (EWM_QUERYSIZE)



